
JOURNAL OF APPLIED POLYMER SCIENCE VOL. VI, ISSUE NO. 23, PAGES 518-528 (1962) 

A Theory of Inclusions in Viscoelastic Materials* 

J. R. M. RADOK and CLEMENT L. TAI 

Department of Aermautical Engineering and Applied Mechanics, Polytechnic Institute of Brooklyn, 
Brooklyn, New York 

Recent years have witnessed a great strengthen- 
ing of the interest taken by students of solid me- 
chanics in the physical aspects of their problems. 
This has succeeded in recreating, to some extent, 
the exciting atmosphere of discovery associated 
in many people’s mind with the age of the natural 
philosophers, the eighteenth and nineteenth cen- 
turies. After decades of usurpation by the pencil 
and paper of the mathematician, when physieal 
assumptions were often acceptable provided they 
led to interesting analysis, experimentation has re- 
turned to its ordained position and the experi- 
menter, rather than the theoretician, has becom 
the most highly valued commodity on the labor 
maTket. 

Two important spheres of activity of solid me. 
chanics demonstrate well this trend : the theories 
of creep and of crack formation. In the former, 
nonlinear creep laws form the basis of the work 
of Hoff,’ Rabotnov,2 Arut i~nian,~ Ka~hanov,~ 
and others in their endeavor to describe the long- 
range performance of such widely differing en- 
gineering materials as concrete, high polymer$, 
and metals at  elevated temperatures. In the latter, 
linear elastic theory combined with local plastic 
considerations and allowance for the forces of mo- 
lecular cohesion provides the foundation on which 
GPiffith,6 Orowan,6 Irwin: Frenkel’? and Baren- 
blatts penetrate the mystery of failures in welded 
ships, turbine blades, and rock strata. A saliept 
feature of both these activities is the role played 
by experiments and the consequent close coopera- 
tion between the investigators and nature. 

This paper presents the results of a first attempt 
a t  understanding physical phenomena which in 
some respects bear a close relationship to those 
investigated in the above-mentioned theory of 
crack formation. In fact, like the ends of cracks, 
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inclusions represent stress-raisers, and as the size 
of the inclusions decreases, one is bound to encoun- 
ter conditions resembling those occurring around 
thd ends of cracks. However, this is looking ahead, 
and at the present time consideration has been given 
only to isolated inclusions having dimensions which 
justify completely the use of small deformation 
theory. These inclusions are of the type the en- 
gineer introduces intentionally, for example, into 
concrete for the purpose of changing material 
strength. They occur also unintentionally as non- 
homogeneities, for example, in products of the 
chemical industry as the result of insufficient con- 
trol of reaction processes. In the case of elastic 
materials, problems involving inclusion phenomena 
have received attention for many years.10-*2 

As far as it has been possible to establish, the 
prewnt treatment of isolated inclusions ip linear 
viscoelastic materials is the first of its kind. I t  
wilf show that the presence of an inclusion causes 
an “up-grading” of the order of the viscoelastic 
mechanism of the “bulk material,” where it will 
be shown that the conditions at the interface be- 
tween the bulk material and the inclusion play 
an important role. It will then be suggested that 
these results may be used to explain the great dif- 
ficulties encountered in obtaining consistent ex- 
perimental evidence for the strength properties of 
high polymers. 

The use of linear, quasi-steady viscoelastic theory 
in work of this nature is well justified by the fact 
that the present study is concerned with short- 
term local effects in the vicinity of a smooth in- 
clusion inside an otherwise homogeneously strained 
medium. In order to demonstrate the charac- 
teristic features of the problems under considera- 
tion and to avoid analytical complexities, most 
of the detailed work will refer to circular cylindrical 
inclusions in bodies in a state of plane strain, sub- 
ject to uniaxial tension at infinity. Thus, the 
inclusion will play the part of a finite stress raiser. 
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In  view of the quasi-steady nature of the basic 
theory, the viscoelastic mechanism will be confined 
to the stress-displacement relations and it will be 
possible to utilize the results of the elastic theory. 
In  the past, several methods have been developed 
for the purpose of obtaining viscoelastic solutions 
from corresponding elastic  solution^.^^'^-^^ A 
somewhat different approach will be used here 
which has been worked out recently and which in 
the case of plane strain utilizes the complex vari- 
able methods, established by Kolosov16 and Musk- 
helishvili. l7 

Kirsch's'o solution of the plane strain problem 
of uniaxial stress in an infinite solid with a circular 
cylindrical hole may be considered the first in a 
long chain of inclusion studies within the framework 
of classical elastic theory. There the most ele- 
gant results belong to Muskhelishvili" in the plane 
theory and to Goodier12 in the three-dimensional 
theory. Their solutions form the basis for the 
present study. 

Consider simultaneously the basic equations of 
the linear, quasi-static theories of elastic and visco- 
elastic plane strain for incompressible materials 
in their complex representation :I5 

a 
dZ 

6 2 2  - u11+ 2ia12 = -4p - (Ul - iU2) 

a 
PP(a22 - 611 + 2i612) = - 2 P  (b, (UI - i?12)} 

a a 
- (U1 + iU2) + - (Ul  - iU?) = 0 az a2 (3) 

where p is the elastic shear modulus, z = x1 + ix2, 
and 

(4) 

are viscoelastic operators. If one of the formal 
methods of v i ~ c o e l a s t i c i t y ~ ~ ~ ~ ~  is used, the quantity 
2p in the elastic solution is replaced by Q/P,  
if necessary after application of the Laplace trans- 
formation. The viscoelastic solution is then ob- 
tained by inversion of the Laplace transform or 
by solution of ordinary differential equations. 

However, in this context, it is to  be noted that the 
elastic theory usually employs an Airy stress 
function which is the solution of a biharmonic 
equation, arising, in general, from the following 
equation in the case of absence of body forces 
(X1,XZ) : ' 

In  the viscoelastic case, the operator correspond- 
ing to the factor (A + 2 p )  may not be removed 
by division. 

With consideration of the operator character of 
P p ,  Qq, the general solutions of eqs. (1)-(3) may 
be written in the form:15 

- 
611 + 6 2 2  = 2['p'(z, + 'p'(z) 1 (6) 

P P {  611 + Q z ]  = 2['p'(z) + 'p'(z)I 

u22 - Qll + 2 k 2  = 2[Z'p"(z) + J.'(z)l (7) 

P P (  un - 611 + 2iu121 = 2[z'p"(z) + J.'(z>l 

Q f ( U 1  + iuz) = cp(.z) - Z'p'(2) - 9 ( Z )  

- 

- -  
2 ~ ( ~ 1  + id = cp(z) - ZP'(Z) - J.(z) (8) 

- -  

where, as in the elastic theory, cp(z), #(z)  are func- 
tions of z which are holomorphic in the region oc- 
cup5ed by the body. l1 

For elastic materials, the functions 'p, J., describ- 

TABLE I 

dz) = ; (. + y) 
$ ( Z )  = - - TI (. + 

+ ") 2 3 - 
Lim- 
its of 
solu- 
tion 
for 

r =  
R, rm - Materials8 - 

Inclu- radial 
sion Bulk Attachment f l  y 6 stress 

~~ 

Void Elastic Zero 2 1 - 1  - 
Rigid Elastic Attached -2 0 1  - 
Rigid Elastic Unattached - 1  0 0 UTI  < 0 

2 ( P l  - 112) 0 P2 -~ - P1 - Elastic Elastic Attached 
Pl + P2 

2P1 - P2 -Pl  

P1 + PZ 

PI + P2 

Pl + P2 
Elastic Elastic Unattached ~ 0- (I, < 0 

* PI = bulk material; p2 = inclusion material. 
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TABLE I1 
u1l + uzz = E + FRz/r2 cos 2e, 

a 2 2  - UII = "2tR2/r2) + H(R4/r4) + K ]  cos 28 + L(ZP/rz) 

In- 
clu- Mode of 
sion Bulk attachment E F G 

Void Elastic Zero 
Rigid I' Attached 
Rigid " Unattached 

Elastic " Attached 

Elastic I' Unattached 

1 -2 

P1 Pl 
Void Maxwell Zero - I 1 (  71) - It( 71) 

1 2 

PI Pl 
Rigid ' I  Attached - Z1(71) - ZI(71) 

H K L 

-3n -11 II 
311 -11 0 
0 -n 0 

0 
3 N P Z  - Pl) 

PI + P2 

PI + PZ 

-II 

0 
-3nP1 

-11 

Void Voigt Zero II - 211 211 
Rigid " Attached n 211 -211 
Rigid ' I  Unattached n 11 -rI 

-311 -11 n 
3n -n 0 

0 -11 0 

ing the state of stress and deformation in the bulk 
material surrounding circular inclusions, may be 
represented in the form" 

where Table I summarizes the values of the pa- 
rameters p, y, 6 for various types of inclusions. 

The differential equations in time for the visco- 
elastic solutions are now readily deduced from these 
elastic solutions, since the process of satisfying the 
stress and displacement conditions at the inter- 

faces involves only simple algebraic operations 
which are permissible for the operators Pp, Qq.  

It is readily seen that in certain cases this proce- 
dure leads to  ordinary differential equations with 
constant coefficients the order of which i s  deter- 
mined by the sum of the orders of the operators 
Pp and Qg; in other words, the order of the model 
of the bulk material without inclusion is specified 
by that of the operators Pp,  Qq, while the order of 
the material with inclusion is specified by that of 
the product of these operators. 

For example, consider the two simplest models 
for viscoelastic materials : 

the Maxwell model with 
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P I  = Po + p1 wat (10) 

Q‘ = b/dt 

the Voigt model with 

Po = 1 (11) 

Q’ = QO + qi a/bt 
In  these two cases, the characteristic times in the 
presence of an elastic inclusion are for the Maxwell 
model : 

TI = Pl/PO (12) 

7.2 = [(l/ZPl + 4 / L 1 2 1  71 

for the Voigt model: 

71 = Ql/QO (13) 

7 2  = [p0/2/(90/2 + P2)ITl  

where in each case r1 corresponds to the relaxa- 
tion and retardation time, respectively, of the homo- 
geneous material. The quantities ‘ / zp l  and q0/2, 
respectively, play the role of the shear moduli of 
the materials, and hence will be assumed to be of 
the same order of magnitude as the shear modulus 
~ ( 2  of the elastic inclusion. It follows that the Max- 
well material with an inclusion acquires a second, 
substantially larger relaxation time, while the 
Voigt material acquires a second, substantially 
smaller retardation time. 

For example, assuming for both materials that 

7 1  = 0.01 

and 

P2 = ‘/ZPl, PI, 2PI 

one fhds for the two materials the corresponding 
pseudo-times : 

Maxwell material : 

Voigt materials: 

2/3r1, 1/271, ‘/371 

Introducing the two integrals 

the general elastic and viscoelastic solutions, i.e., 
the expressions for the stresses and displacements 
in the bulk material for the cases of Table I, can 
be presented in the form of Table I1 with II rep- 
resenting the loading varying with time. 

Now let 

n(t) = nO(l - e-t’Y) (15) 

with y a parameter determining the initial rate of 
loading 

(dlI/dt),=o = no/r (16) 

Figure 1 shows that loading function for y = 0.05, 
0.10, 1.0, and 10.0 and demonstrates its usefulness 
for the present investigation. 

The case of the elastic, attached inclusion will 
now be considered in detail for the Maxwell ma- 
terial with the relaxation time rl = 0.01 and an 
inclusion with PZ = 1/2p11 so that r2 = 0.03; and for 
the Voigt material with the retardation time 71 

= 0.03 and an inclusion with p2 = 2~1 ,  so that r2 
= 0.01. 

Figures 2-5 demonstrate the changes in the stress 
distributions around the inclusion in the two ma- 
terials as functions of the time as well as of the dis- 
tance from the inclusion. These curves illustrate 

I 
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

t 
Fig. 1. Loading histories. 
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Figure 2. 

well the typical behavior of the respective materials 
under two-dimensional conditions. 

Figure 6 shows the time histories of the sum and 
difference of the direct stresses at a point on the 
interface between the same bulk materials and at- 
tached and unattached inclusions. It is important 
to note here that the curves for unattached inclu- 
sions have validity only while U, < 0, since other- 
wise detachment occurs and the imposed boundary 
conditions are no longer applicable. The presence 
of the second characteristic time is demonstrated 

b0.05 

,025 

0 L 

6 0  

40 

2 0  

0 

by the greater complexities of these time histories 
which exhibit extreme values and points of inflec- 
tion. Indeed, in some cases it can lead to a re- 
versal of the stresses during the early stages of the 
loading process. 

Clearly, in cases of several inclusions lying closely 
together, the above effects will accumulate and 
lead to a finite number of characteristic times. 
As the number of inclusions increases, one will ap- 
proach the stage when one has to deal with a spec- 
trum of such times. This is in agreement with the 
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conclusion reached by Kolsky and Shils that phys- 
ical materials cannot be represented over their 
entire range of loading by low order operators. 
It might be argued that their work is concerned 
with homogeneous materials, and that therefore 
their conclusions cannot be explained by the pres- 
ence of inclusions. At this stage, it can only be 
suggested that the molecular structure of many vis- 

coelastic materials of interest today, i.e., the mac- 
romolecules of high polymers, tend to form con- 
tinua which might be conceived to be homogeneous 
except for interspersed stress raisers of the type 
considered here. 

At this stage it becomes natural to think in terms 
of a close relationship between the present work and 
Barenblatt's work on crack f~rrnat ion.~ As the 
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size of the stress raisers decreases, it will become 
necessary to take into account the forces of molec- 
ular cohesion, and this establishes the need for 
experimental work on such forces in high poly- 
mers. As in the work on crack formation, i t  is 

clear that the size of the inclusions, i.e., in the above 
cases, the diameter R, is an indefinite parameter, 
a circumstance which can hardly be expected to 
prevail over the entire range of inclusion sizes. 

Extensions of this work to three dimensional in- 
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clusions and to compressible materials greatly com- 
plicate the analysis without increasing fundamental 

elastic inclusions. In the case of plane strain for (3’) 

i3 
R’(u11 + u22) = s* 1- (u + iv) + 

(a2 
knowledge. The same observation applies to visco- 

compressible materials eqs. ( 3 ) ,  and (6)-(8) are 
replaced15 by 
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Figure 6.  

As a result, the order of the ordinary differential 
equations in time which lead from the elastic to 
the viscoelastic solutions is increased and hence 
the viscoelastic stress histories exhibit the presence 

for the cases of attached and unattached inclusions 
in Maxwell and Voigt materials, this number of 
acquired relaxation and retardation times rises 

-k $'(')I 
- _ _  

2y1'u1 + iu2' = (3-4u1)p(z) - zp"z) - '(" (8') of additional pseudo-characteristic times. In fact, 
QgS8(QqRr + PIS8) { u + iv ] = (2QqRr + PqS8) 

x ( c p ( 4 )  --qs8{zcp'(z) + 
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to four, and it is no longer possible to give simple 
formulae for their values in terms of the material 
constants. 

The study of three dimensional spherical in- 
clusions on the basis of the elastic results of Good- 
ierI2 leads to an even greater complexity which has 
precluded completion, and hence publication in this 
report, of the pertinent analysis. Since the work 
of Goodier12 is based on the Navier equations and 
their solutions in terms of spherical harmonics, 
the formal procedure of establishing formulae for 
viscoelastic problems differs from that adopted in 
the case of plane strain, where effectively a stress 
function had been employed. In  the two dimen- 
sional case, the stresses are determined first and the 
displacements follow from the strain-stress rela- 
tions. In  the three-dimensional case the displace- 
ments are evaluated from the equations 

or 

[ (2PpSa + QPR') ] (&3/d~ , )  + 3Q'R' V ' U ~  = 0 

where 

and the stresses must be obtained from the stress- 
strain relations 

Detailed results on these and related problems will 
be discussed in a later report. 

In  conclusion, the deductions of the present in- 
vestigation may be summarized as follows. As 
in elastic materials, an inclusion in a viscoelastic 
material plays the role of a stress raiser which, in 
the case of smooth boundaries, is of finite order. 
In  addition, they also change locally the time de- 
pendent behavior of the bulk material which ap- 
pears to acquire additional characteristic times, 
normally associated with higher order models. 
As a consequence, it may be suggested that visco- 
elastic .materials with impurities, distributed 
throughout a t  random, are bound to require either 
high order models or continuous spectra of charac- 
teristic times for an adequate description of their 
response in time and space. 
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Synopsis 
Two important groups of viscoelastic materials may, in 

practical applications, be characterized by the presence of 
inclusions. In  high polymers, the control of the production 
of homogeneous batches presents often unsurmountable 
difficulties and hence unintended regions of nonhomogeneity 
will result. In concrete structures, reinforcements are 
often introduced to ensure strength in tension, and these 
inclusions, while intentional, are bound to change the be- 
havior of the bulk material. This investigation of the 
effects of circular cylindrical and spherical inclusions in 
infinite two- and three-dimensional bodies, subject to uni- 
axial loading at infinity, has been based on linear viscoelastic 
theory. It has been assumed that the inclusions are either 
rigid, perfectly elastic or viscoelastic and that their bound- 
aries are free or welded to the surrounding material. In all 
these cases, the behavior of the viscoelastic material sur- 
rounding the inclusions will differ essentially from that of 
the material without inclusions. For example, it may be 
shown that a single parameter material will exhibit several 
retardation or relaxation times. In view of this situation, 
the interpretation of experimental test results on viscoelastic 
materials as well as the practical usefulness of linear visco- 
elastic theory appear in a new light which is discussed on the 
basis of the available information. 

R6sum6 
Deux groupes importants de matkriaux visco6lastiques 

peuvent, pour les applications pratiques, &re caractkris6s par 
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la presence d’inclusions. Dans le caa des hauts polymbres le 
contrble de la production lors de la preparation en bairn 
homogenes presente souvent des difficult& insumontables 
avec comme condquence involontaire la presence des 
regions non-homogbnes. Dans les structures concretes des 
renforcementa sont souvent introduita pour augmenter la 
force de tension e t  ces inclusions, qui sont voulues, sont 
ajoutees pour modifier le comportement de la masse de 
mat4riaux. Les recherches, Bur les effeta d’inclusions circu- 
laires, cylindriques et  spheriques dans des objeta bi- e t  tri- 
dimensionnels, soumis A une charge uniaxiale il l’infini, ont 
6% basees sur la theorie viscoelastique lineaire. On a sup- 
pose que les inclusions sont soit rigides, parfaitement Bas- 
tiquea ou viscoelastiques et que leurs frontibres sont libres 
on soudees au materiel qui les entoure. Dans tous ces cas, le 
comportement de la substance viscoklastique entourant les 
inclusions differera essentiellement du comportement de la 
substance sans inclusions. On peut montrer par exemple 
qu’un materiau caracterise par un parametre unique mani- 
festera plusieurs temps de retard et  de relaxation. D’aprks 
ces donnees, l’interpretation des resultata des essais ex- 
perimentaux Bur des substances viscdlastiques aussi bien 
que l’utilit6 pratique d’une theorie viscoelastique lin6aire 
apparakent sous un angle nouveau qui e& discut4 sur la 
base des renseignmenta disponiblea. 

Zusammenfassuag 
Zwei wichtige Gruppen von viskoelastischen Materialien 

konnen bei praktischer Anwendung durch daa Vorhandensein 

von Einschliissen charakterisiert werden. Bei Hochpoly- 
meren bietet die Kontrolle der Herstellung homogener Mas- 
sen ,oft unuberwindbare Hindernisse und es konnen daher 
unbeabsichtigt nichthomogene Bereiche entstehen. Bei 
Betonkonstruktionen werden oft zur Festigkeitaerhohung 
Verstarkungen eingefuhrt und diese absichtlichen Ein- 
schliisse werden notwendigerweise das Verhalten des 
ursprunglichen Materials verandern. Der vorliegenden 
Untersuchung des Einflusses von aylindrischen und kugel- 
formigen Einschlussen in zwei- oder dreidimensionalun- 
endlichen Korpern, die einer uniaxialen Belastung unter- 
wortfen waren, liegt die lineare Viskoelastizitiitstheorie 
zugrunde. Es wurde angenommen, dass die Einschliiase 
entweder starr, vollkommen elastisch oder viskoelastisch 
sind und dass ihre Oberflache frei oder mit dem umgebenden 
Material verschmolaen ist. In  allen diesen Fallen wird sich 
das Verhalten des viskoelastischen Materials in der Umge- 
bung der Einschlueae von dem des Materials ohne Ein- 
schliisse wesentlich unterscheiden. Zum Beispiel kann 
gezeigt werden, dass ein Ein-Parameter-Material einige 
Verzogerungs- und Relaxationszeiten aufweisen wird. In  
Hinblick auf diese Situation erscheint sowohl die Interpreta- 
tion der Testergebnisse an viskoelastischen Materialien als 
auch die praktische Verwendbarkeit der linearen Visko- 
elastizitatstheorie in einem neuen Licht ; eine Diskussion auf 
Grund der vorhandenen Angaben wird durchgefuhrt. 

Received May 19, 1961 


